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Decoherence and Triorthogonal Decomposition

Gennaro Auletta

A “decoherent” measurement is a dephasing plus tracing out plus triorthogonal de-
composition. Dephasing can happen any time when a small system is coupled with
a large reservoir. It is in principle reversible. But in order to have a measurement we
also need the tracing out and the triorthogonal decomposition. The first requirement is
observation-dependent (because environment plus apparatus plus object system even-
tually remain in a superposition). But the second one is an irreversible and irrelative
change. In the presence of three “systems” the basis degeneracy problem disappears,
i.e. there can be diagonalization only relative to an observable (the measured one).
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1. INTRODUCTION

Decoherence is widely accepted today as a theory of dephasing, and is actually
used in many areas, for instance in quantum information or in several models where
a system is coupled with a reservoir. It does not suppose as such a departure from
the reversible dynamics of elementary quantum systems. But, as a solution of the
measurement problem, does not find a universal agreement. In fact, it is considered
as a solution, which is point of view-dependent. Tracing out is only a relative
solution and one chooses a specific form (model) of the interaction Hamiltonian
between environment and object system. Here I show that decoherence has an
objective character if triorthogonal decomposition is considered.

2. REQUIREMENTS OF MEASUREMENT

Busch et al. (1995, p. 40) have pointed out that a measurement should satisfy:

• A probability reproducibility requirement: A pointer observable ÔA must
reproduce the probability measure of obtaining a result in the subset X :

℘ ÔS

ρ̂S (X ) = ℘ ÔA

TrS [T (ρ̂S⊗ρ̂A)]( f −1(X )) (1)
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for any value set X ∈ the spectrum ϒS of values of the measured observ-
able and for all possible initial states ρ̂S of the system. T is a transform,
expressing the measurement process, of the initial state ρ̂S ⊗ ρ̂A of the sys-
tem S and the apparatus A. The transformation T is called an operation
(Davies, 1976, pp. 17–18). An operation T is the positive linear mapping
from a state space to another, which satisfies following irreversible state
transition:

0 ≤ Tr(T ρ̂) ≤ Tr(ρ̂) (2)

• An objectification requirement (of the pointer and of the values): A mea-
surement must lead to a definite result (Busch et al., 1991, p. 30). This re-
quirement entails firstly the pointer objectification and secondly the value
objectification. We shall only discuss the pointer objectification. The inter-
pretation that ρ̂A

f ( j, ρ̂S ) is the final state assumed by A on the condition
that the pointer has its value in f −1(X j ) follows if pointer objectification
is postulated (Busch et al., 1991, pp. 36–37). The pointer objectification
requires
–that the state ρ̂A

f (ϒS , ρ̂S ), for all initial states ρ̂S , is a mixture

TrS
[
T

(
ρ̂S ⊗ ρ̂A

f

)] =
∑

j

℘ ÔS

ρ̂S (X j )ρ̂
A
f ( j, ρ̂S ) (3)

of the pointer eigenstates ρ̂A
f ( j, ρ̂S ),

–and that

ÔA
j ρ̂A

f ( j, ρ̂S ) = ρ̂A
f ( j, ρ̂S ) (4)

This may be called the pointer value-definiteness condition—with respect
to a reading scale RM (i.e. ÔA = ∪ f −1(X j )).

3. NECESSARY AND SUFFICIENT CONDITIONS
OF MEASUREMENT

In the following I shall show evidence for the following proposition

Proposition 3.1. (Measurement) Necessary and sufficient condition in order to
satisfy the probability reproducibility condition and the objectification requirement
are the following:

(NA ∧ T1 ∧ T2 ∧ T3 ∧ T4) ↔ (PR ∧ O), (5)

where NA stays for ‘necessity of the apparatus,’ T for ‘theorem,’ PR for ‘probability
reproducibility condition’ and O for ‘objectification requirement.’
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4. ARGUMENTATION

4.1. First Requirement

Let us discuss these requirements in details. The first requirement is a general
one: the necessity of the apparatus. It is also valid for classical mechanics. In
quantum mechanics there is further problem that if we wish to measure observables
which commute with the energy, and the system is an initial state of superposition
of eigenstates of the energy, then there is no means to obtain by unitary evolution
an eigenstate of the measured observable and then a determined property.

4.2. Second Requirement

The second requirement is the following. We need that the apparatus A and
the system S can be coupled in such a way that there is a relationship between
properties of the system and values of the pointer. In other words the total wave
function of the system S+ the apparatus A should be represented after the inter-
action as a superposition of pairs of subsystem states such that there is a shift of
the pointer observable from the initial value, which would allow the storage of the
result of a measurement in the memory of A. If we let S and A interact, so as to
measure some observable of S from a time t = 0 to ts (where interaction stops),
then we could write the Schrödinger equation of the whole system as follows:

ı h
∂

∂t

∣∣�S+A
t

〉 = ĤSA

∣∣�S+A
t

〉
. (6)

If we explicitly write the dependence of the wave functions of the two subsystems
on the position: ς (q), A(r)—since measurement with an apparatus can be seen as
a position of a pointer on a graduate scale, then the state:

�S+A
t (q, r) = ς (q)A(r − qt) (7)

is a solution of the equation

ı h
∂

∂t
�S+A

t (q, r) = ĤSA�S+A
t (q, r). (8)

Obviously, this is not a general formulation. It depends on the form of the in-
teraction Hamiltonian. But any measurement presents specific constraints, which
are dependent on the observable one chooses to measure and on the system one
chooses to measure on.

Consider now the time t = ts , at which interaction stops, when there is no
more definite independent apparatus state. Then we can formulate the following
theorem.

Theorem 4.1. (Everett) The total wave function of the system + apparatus can
be represented after the interaction as a superposition of pairs of subsystem states
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of the form:

�S+A
ts (q, r) =

∫
ς (q′)δ3(q − q′)A(r − qts)dq′ (9)

where the term A(r − qts) expresses a shift of qts from the initial A(r) which
allows the storage of the result of a measurement in the memory of A.

However, as we know (by the objectification requirement), the state resulting
from a measurement process can neither be an entanglement of A and S, nor a
superposition of S’s or A’s states, but needs to be a (classical) statistical mixture
(for instance, a statistical mixture describes the probabilities of outcomes of a
classical dice before the result is read). But not all forms of mixture of states of a
system S and an apparatus A are good for describing the final state resulting from
a measurement process. As we know by Everett theorem, the necessary condition
of a measurement is that the density matrix of the apparatus changes during the
measurement process, i.e. A extracts information from S (Joos, 1996a, p. 44). We
can synthesize these two requirements in short as:

ρ̂S�
∑

j

P̂j ρ̂
S P̂j (10)

for the different eigenvalues j of the measured observable ÔS . In fact, suppose, for
the sake of simplicity, that ρ̂S = |ψ〉〈ψ | and |ψ〉 = c0|0〉 + c1|1〉, where |0〉 and
|1〉 are the eigenkets of the measured observable ÔS . Then, it is straightforward
that

1∑
j=0

P̂j ρ̂
S P̂j = |0〉〈0| (c0|0〉 + c1|1〉) (〈0|c∗

0 + 〈1|c∗
1

) |0〉〈0|

+|1〉〈1| (c0|0〉 + c1|1〉) (〈0|c∗
0 + 〈1|c∗

1

) |1〉〈1|
= (c0|0〉〈0|0〉 + c1|0〉〈0|1〉) (

c∗
0〈0|0〉〈0| + c∗

1〈1|0〉〈0|)
+ (c0|1〉〈1|0〉 + c1|1〉〈1|1〉) (

c∗
0〈0|1〉〈1| + c∗

1〈1|1〉〈1|)
= |c0|2|0〉〈0| + |c1|2|1〉〈1| = |c0|2 P̂0 + |c1|2 P̂1, (11)

which is the desired result. Such a mixture is called a Lüders mixture (Lüders,
1951).

4.3. Third Requirement

The third requirement is that either the value of the macroscopic pointer
reduces to an eigenvalue of a quantum observable or it is a type of average over
microscopic observables.
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In fact, the assumption that the pointer observable is classical implies (Busch
et al., 1991, pp. 82–83; Mittelstaedt, 1998, p. 109).

Theorem 4.2. (Classicality of pointer) Let a measurement scheme 〈HA, ÔA,
|A〉, Û 〉 be a candidate for a measurement of a discrete sharp observable ÔS ,
where HA is the Hilbert space of the apparatus, |A〉 is the ket describing the
apparatus and Û = eı ĤSAτ , where ĤSA is the interaction Hamiltonian between
system and apparatus and τ is the time interval of interaction. If ÔA is classical,
then the coupling g cannot be generated by an observable of S + A, because in this
case 〈HA, ÔA, |A〉, Û 〉 cannot fulfill the probability reproducibility condition (1).

Proof: Suppose that pointer observable ÔA, referred to a discrete sharp observ-
able ÔS of S, is classical. We assume that ĤSA, the interaction Hamiltonian be-
tween system and apparatus, commutes with ÔA. In fact, an interaction
Hamiltonian commutes with all classical observables pertaining to the coupled
systems. Therefore, ÔA also commutes with Û and it follows that the probability
distribution of ÔA is completely independent from the measured observable. In
other words, the apparatus remains uncoupled with the object system. We can show
it by taking the mean value of ÔA:

〈�(τ )|ÔA|�(τ )〉 = 〈Û�|ÔA|Û�〉 = 〈�|Û † ÔAÛ |�〉
= 〈�|Û †Û ÔA|�〉
= 〈�|ÔA|�〉, (12)

where |�〉 = |ς〉|A〉, |ς〉 is the ket describing the object system and 〈�(τ )| =
Û 〈�|. Such a situation is incompatible with condition (1) unless ÔS is trivial (i.e.
constant). QED. �

Therefore the pointer cannot really be classical. But, since it also seems that
it cannot be quantum mechanical (due to Everett theorem), then Machida and
Namiki proposed what follows.

Proposition 4.2. (Machida/Namiki) The value of a macroscopic variable of A
read in a measurement is not an eigenvalue of a QM observable but is a kind
of average over microscopic observables, i.e. over a large number of Hilbert
spaces.

In other words, for Machida and Namiki, A—we mean here not only the little
measuring device, but also the amplifiers—cannot be considered as a proper quan-
tum system if we consider the final macroscopical result. Machida and Namiki
have presented a model of how it can happen. More details on the model can
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be found in (Machida and Namiki, 1980, pp. 1837–1839).2 The Machida/Namiki
model is very interesting because it acknowledges the decoherence as in general
imperfect, i.e. such that we never have elimination of off-diagonal terms (Namiki
and Pascazio, p. 321). But, on the other hand, there is a risk of interpreting the
measurement process exclusively in statistical terms (not only the measuring ap-
paratus, especially the amplifying device, but also the object system S itself), by
excluding a description of individual events.3

Furthermore, the statistical character of the model presents some difficulties
also for the pointer. In fact, the essential aspect of a measurement is the change
in the pointer’s position in the apparatus, whereas the scattering process of the
Machida/Namiki model would leave the scatterer practically unchanged (if mea-
sured by the inner product)—dephasing is not a transformation. Hence the model
can only account for ensembles and not for individual measurements. However, a
recent correction due to Nakazato/Pascazio (Nakazato and Pascazio, 1993) takes
into account the energy exchange between the system and the apparatus.

4.4. Fourth Requirement

The fourth requirement is that there is an environment E which makes all
information about the premeasured system unavailable with only one exception.
Previously the influence of E was normally considered a noise factor. Instead, we
can understand the importance of this factor by formulating the following theorem
(which synthesizes the analysis of both Zeh and Zurek).

Theorem 4.3. (Zeh/Zurek) The Environment washes out all information about
the premeasured system with only one exception: when the Hamiltonian ĤAS,
which couples A and S, commutes with an observable ÔS :

[ÔS , ĤAS] = 0 (13)

then this particular observable will not be disturbed, so that the pointer of the
apparatus will contain the information about this observable and only this one.

The theorem guarantees the required correlation between the system’s and
the apparatus’ observables. Obviously, such a theorem cannot be understood in the
sense of a classicality of the pointer, due to the problem seen above (Theorem 2).
In fact, as we shall discuss below, interference terms are never destroyed and other
observables which do not commute with the one measured, always enter, to a
certain extent, in the result which is never 100% ‘determined’—in other words,
we have here a POVM. We also have the following consequence of the previous
theorem for the pointer observable:

2 See also (Auletta, 2000, pp. 279–281).
3 As is acknowledged by Namiki and Pascazio (1993, p. 325).
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Corollary 4.1. (Zurek) The pointer observable ÔA commutes with the
Hamiltonian ĤAS:

[ÔA, ĤAS] = 0 (14)

4.5. Fifth Requirement

Finally, the fifth requirement is that the transformation (state reduction) is not
unitary but is obtained by tracing out the environment. In fact, we have said that
we need a Lüders mixture. Now, if the initial state of A + S is a pure state, there
is no means to obtain a mixture by unitary evolution. In fact a pure state remains
a pure state after a unitary evolution, as can be easily proved.

Proof: We start with the equality for pure states:

ρ̂2
t = Û t ρ̂0Û †

t Û t ρ̂0Û †
t

= Û t ρ̂0Û †
t = ρ̂ t (15)

so that if ρ̂2
0 = ρ̂0, then we also have: ρ̂2

t = ρ̂t , i.e., after a unitary and continuous
evolution, we again have a pure state and not a mixture. QED. �

Hence we can summarize the results of Shea/Scully/McCullen (Scully, et al.,
1978; Zurek, 1981, 1982; Cuini, 1983), in the following theorem.

Theorem 4.4. (Partial trace) The reduction required by a measurement can be
obtained with a partial trace, which is not unitary.

The result of such a process is a mixture generated by a partial trace with
respect to a total system, which eventually remains in a pure state.

Therefore, summarizing the analysis of Zeh (1970, 1993) and Joos (1996a,
pp. 43–44, 115–124), we can formulate following theorem.

Theorem 4.5. (Joos/Zeh) Off-diagonal terms of the density matrix describing
the object system, cannot be destroyed in the S + A system as a whole, but only
downloaded into the environment.

This theorem guarantees the necessary correlation between values. Finally the
downloading of off-diagonal terms in the environment implies following corollary
as a consequence:

Corollary 4.2. (Off-diagonal terms) The off-diagonal terms of the ρ̂ of the object
system tend to zero in a measurement process but they can never really be zero.
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5. DISCUSSION

One could say that, being a measurement the result of a partial tracing out,
it is only relative to the observer or to a particular point of view (this is the point
of the many-world interpretation). But it is not so. In fact, the fourth requirement
introduces three systems in interaction. Now, when apparatus and object system
interact alone, there is always a basis degeneracy. In fact, let us write (Zurek, 1981,
p. 1516, 1982)

|A0〉 ⊗ |ς〉 �→
∑

o

co|Ao〉 ⊗ |o〉, (16)

where one could say that we have measured observable Ô for which the spectral
decomposition is Ô = ∑

o c′
o|o〉〈o|. But suppose that we express the state of A in

another basis {|Ao′ 〉} composed of superposition of states |Ao〉:
|Ao′ 〉 =

∑
o

〈Ao|Ao′ 〉|Ao〉. (17)

Then we can rewrite state (16) of the compound system as:∑
o

co|Ao〉 ⊗ |o〉 =
∑

o′
|Ao′ 〉 ⊗

∑
o

co〈Ao′ |Ao〉|o〉 =
∑

o′
c′′

o′ |Ao′ 〉 ⊗ |o′〉. (18)

If the coefficients co in Equation (16) have the same magnitude, then (by RHS
of Equation (18)) whenever the set {|Ao′ 〉} is orthonormal, also the set {|o′〉} is
orthonormal. Then A contains not only information about the observable Ô but
also about another observable Ô ′ = c′′′

o′ |o′〉〈o′|, even if normally Ô and Ô ′ do not
commute. And the same can be said about many other observables. We call such
a problem the basis degeneracy problem.

But this is not so in the case of a triorthogonal decomposition (Elby and Bub,
1994, pp. 4215–4216). First, let us state the following lemma.

Lemma 5.1. (Elby/Bub) Let {|a j 〉} and {|s j 〉} be linearly independent sets
of vectors, respectively, in H1, H2 for two generic systems S1, S2. Let {|s ′

j 〉}
be a linearly independent set of vectors that differs non-trivially from {|s j 〉}. If
|�〉 = � j c j |a j 〉 ⊗ |s j 〉, then |�〉 = � j c′

j |a′
j 〉 ⊗ |s ′

j 〉 only if at least one of the
{|a′

j 〉} vectors is a linear combination of (at least two) {|a j 〉} vectors.

We omit the proof of the lemma,4 but use it to prove per contradictionem the
uniqueness of triorthogonal decomposition (in order to indirectly prove Theorem 3
and its corollary, so that the required pointer objectification can be obtained).

Proof: Suppose a vector |�〉 = � j c j |a j 〉 ⊗ |s j 〉 ⊗ |e j 〉, where {|a j 〉}, {|s j 〉},
{|e j 〉} are orthogonal sets of vectors respectively in H1, H2, H3 for three generic

4 See the original article of Elby and Bub.
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systemsS1, S2, S3. Then, we claim that even if some of the |c j |s are equal, no alter-
native orthogonal sets {|a′

j 〉}, {|s ′
j 〉}, {|e′

j 〉} exist such that |�〉 = |a′
j 〉 ⊗ |s ′

j 〉 ⊗ |e′
j 〉,

unless each alternative set of vectors differs only trivially from the set it replaces.
Assume, without loss of generality, that {|e j 〉} differs non-trivially from {|e′

j 〉},
and let us write |�〉 = � j c j | f j 〉 ⊗ |e j 〉 (where | f j 〉 := |a j 〉 ⊗ |s j 〉). Now sup-
posing |�〉 = � j c′

j | f ′
j 〉 ⊗ |e′

j 〉 (where | f ′
j 〉 := |a′

j 〉 ⊗ |s ′
j 〉), we cannot rewrite the

factorisable state |a′
j 〉 ⊗ |s ′

j 〉 as an entangled state. �

But according to Lemma 1, since |�〉 = � j c j | f j 〉 ⊗ |e j 〉 and since {|e j 〉}
differs non-trivially from {|e′

j 〉}, then we have |�〉 = � j c′
j | f ′

j 〉 ⊗ |e′
j 〉 only if

| f ′
k〉 = � j g jk | f j 〉, where at least two of the g jk’s are non-zero. But since | f j 〉 :=

|a j 〉 ⊗ |s j 〉, it follows that | f ′
k〉 is an entangled state (| f ′

k〉 = � j g jk |a j 〉 ⊗ |s j 〉),
which is the required contradiction. QED.

The above proof shows that one should not identify the triorthogonal decom-
position presupposed by decoherence with the von Neumann chain: in the second
case, only successive measurements, in which each decomposition is biorthogonal,
are considered. Note that, while the partial trace is a mathematical formalism which
reflects our ignorance (our ‘discarding’) of the environment and that is therefore
relative to the subsystem over which we perform such a partial trace, the triorthogo-
nal decomposition—due to the introduction of a third factor (the environment)—is
not a relative property (not relative to an observer) but an absolute one.

In summary, a “decoherent” measurement is therefore dephasing plus tracing
out plus triorthogonal decomposition. Dephasing can happen any time when a
small system is coupled with a large reservoir. It is in principle reversible. But in
order to have a measurement we need also the tracing out and the triorthogonal de-
composition. The first requirement is observation-dependent (because S + A + E
eventually remains in a superposition); but the second one is an irreversible and
irrelative change. In the presence of three “systems” (S + A + E) the basis de-
generacy problem disappears, i.e. there can be diagonalization only relatively to
an observable (the measured one).

In other words decoherence as a theory of measurement is characterized by
unsharpness plus objectivity.

6. MWI AND DECOHERENT HISTORIES

Here we wish to stress some critical points about the many-world interpreta-
tion and the decoherent histories.

• The many-world interpretation (MWI) is not consistent with the triorthog-
onal decomposition requirement. In fact either it is subjected to the basis
degeneracy problem or must admit some form of objective ‘reduction’ of
the wave, contrarily to its original aim.
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• On the other hand, if we wish to maintain decoherence (as some proponents
of the decoherent histories do), we must introduce an operation of tracing
out (see Theorem 4). Now it is possible to argue that a reversibility is ex-
cluded only in the system + apparatus + environment reference ‘frame,’
and that, by taking larger systems or other ones, one could obtain other de-
compositions. Apart from the problem of what ‘larger’ or ‘other’ systems
could be (see next point), if so, i.e. if we accept the second alternative (sym-
metry of time), then we are faced with another alternative: either we follow
Griffiths, and suppose that there is a real loss of diagonal terms, or we sup-
pose that we never have a real loss of coherence. And here, while Griffiths’
proposal assumes that alternative histories pertain to a statistical mixture
(without interference terms between them), the proponents of the decoher-
ing history approach seem to suppose that the alternative histories are in
superposition. But if so, ‘decohered’ or macroscopical objects become only
illusory while the decohered histories should be more imaginary than real.

In this case then the decohering histories interpretation would be noth-
ing more than the MWI itself and, as the MWI, would be subjected to the
fallacy of the basis degeneracy.

• We have seen that trio-orthogonal decomposition is something more than
the partial trace. However, we do not consider this problem here and con-
sider only the operation of partial tracing. It seems then, that in this way
one can distinguish the decoherent history approach from the MWI. And
in this way Joos and Zeh, Omnès in later works (Omnès, 1994) and Kiefer
(1996b, p. 177) seem to understand the subject. But how can a history be
decohering if it is a history of the whole universe, and hence without an
‘external environment’ able to produce such a local and partial effect? Nat-
urally it should happen relatively to us, i.e. to some particular and partial
tracing out. But here the situation is inverted: we do not have one or two
small systems (S + A), which interact with a large environment, but a very
big environment (the whole universe!) which is ‘measured’ in some way
by small systems within it.

• But, apart from the problems posed by the above inversion, is it better
to suppose that it is possible to ‘measure’ the universe as such or some
of its observables? How could it be possible to ‘measure’ in one way or
another the wave function of the universe? By which technical and theo-
retical means? In fact there is no way to know directly the wave function
or the state of the universe, since our universe is unique. In general, if
we wish to maintain some statistical value for a wave function, then we
cannot use the wave function for very big systems—and certainly not for
the whole universe—because it is impossible—even in principle—to re-
produce exactly the same conditions (to make identical copies of a state of
our universe) (Woo, 1986, p. 924; Fink and Leschke, 2000).



Decoherence and Triorthogonal 2273

• And, as a consequence, since partial tracing depends from the point of view
of an observer or of an apparatus ‘internal’ with respect to the observed
system (the universe), this signifies that there can be reduced states (by
tracing out the rest of the world) of different states of the universe which
cannot be distinguished by this ‘internal’ observer or apparatus.5

For example (Breuer, 1997, p. 109) there are several ‘states of the uni-
verse’, which are different from one other only through EPR-correlations
between several observers of the same event: these observers then ‘see’ the
same event though the states of the whole are different.

Generalizing, since a measurement is a bilinear correspondence be-
tween the states of a system S (here the environment) and the states of an
apparatusA from which the properties ofS can be inferred (see Theorem 1,
p. 4), it follows that S determines A. But, as we know, in QM a whole
(the universe) in entanglement does not necessarily determines the parts
(the ‘measuring’ apparatus). And, if we are not able to measure some
observables, how can we speak in any form of the wave function of the
universe?
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